Вопрос задан 05.05.2019 в 12:37. Предмет Математика. Спрашивает Гнатченко Миша.

Решите уравнение \1/х\ модуль \1/х\=5/8

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зимина Анастасия.
1 перед х не пишется, это коэффицент,
х x_{1} = - 5/8
х x_{2} = 5/8
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения с модулем, нам нужно рассмотреть два случая: когда значение переменной x в модуле положительное и когда оно отрицательное. Давайте рассмотрим каждый случай по очереди.

1. Когда x > 0: В этом случае модуль |1/x| просто равен 1/x, поскольку значение в модуле уже положительное. Поэтому наше уравнение примет вид: 1/x = 5/8.

Для решения этого уравнения, мы можем умножить обе стороны на x (поскольку x > 0): 1 = (5/8) * x.

Затем мы можем умножить обе стороны на 8/5, чтобы избавиться от дроби: x = (8/5) * 1.

Упрощая, мы получаем: x = 8/5.

Таким образом, в случае, когда x > 0, решением уравнения является x = 8/5.

2. Когда x < 0: В этом случае модуль |1/x| становится -1/x, поскольку значение в модуле становится отрицательным. Поэтому наше уравнение примет вид: -1/x = 5/8.

Для решения этого уравнения, мы можем умножить обе стороны на x (поскольку x < 0): -1 = (5/8) * x.

Затем мы можем умножить обе стороны на 8/5: x = (8/5) * -1.

Упрощая, мы получаем: x = -8/5.

Таким образом, в случае, когда x < 0, решением уравнения является x = -8/5.

Итак, уравнение 1/x * модуль(1/x) = 5/8 имеет два решения: x = 8/5 и x = -8/5, в зависимости от значения переменной x.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос