Вопрос задан 05.05.2019 в 05:02. Предмет Математика. Спрашивает Сундеева Аня.

Двум малярам поручили выкрасить фасад дома. Они разделили фасад на две равные части и одновременно

приступили к работе. К тому времени,когда первый маляр покрасил 3/5 своей части,другому осталось покрасить ещё 33м2. К тому времени,когда второй маляр покрасил половину своей части,первому оставалось покрасить ещё 20м2. Найдите площадь фасада.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Нурмагомедов Хабиб.

первому осталось покрасить 1-3/5=2/5 от х,где х-площадь половины фасада,а второму осталось покрасить-33м2

 

(х-33)-х/2=2х/5-20

х-х/2-2х/5=33-20

х=130,а весь фасад-260м2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

Two painters were assigned to paint the facade of a house. They divided the facade into two equal parts and started working simultaneously. By the time the first painter had painted 3/5 of his part, the second painter had 33 square meters left to paint. By the time the second painter had painted half of his part, the first painter had 20 square meters left to paint. We need to find the total area of the facade.

Solution

Let's assume the total area of the facade is A square meters.

According to the given information: - When the first painter had painted 3/5 of his part, the second painter had 33 square meters left to paint. - When the second painter had painted half of his part, the first painter had 20 square meters left to paint.

Let's calculate the area of each painter's part: - The first painter had painted 3/5 of his part, so he had 2/5 left to paint. - The second painter had painted half of his part, so he had half left to paint.

Based on this information, we can set up the following equations:

Equation 1: (2/5)A = 33 Equation 2: (1/2)A = 20

To find the value of A, we can solve these equations simultaneously.

Solving the Equations

Let's solve Equation 1 for A:

(2/5)A = 33

Multiplying both sides by 5/2:

A = (33 * 5) / 2

Simplifying:

A = 165 / 2

A = 82.5

Now, let's solve Equation 2 for A:

(1/2)A = 20

Multiplying both sides by 2:

A = 20 * 2

A = 40

Since we have two different values for A, we need to determine which one is correct. Let's compare the two values:

- A = 82.5 (from Equation 1) - A = 40 (from Equation 2)

Since the area of the facade cannot be a fraction, the correct value for A is 40 square meters.

Answer

The total area of the facade is 40 square meters.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос