|1-х|=-2 |x-1|=2 |3-x|=0
Ответы на вопрос
        3-х=0
х=0
Ответ: 0
|1-х|=-2
Уравнение не имеет решений.
|х-1|=2
х-1=2
х-1=-2
х=3
х=-1
Ответ: 3;-1
Удачи!
            I can help you solve these equations. Let's start with the first one: |1-x| = -2.
The absolute value of a number is always non-negative, so there is no real solution for this equation. You can see this by graphing the function y = |1-x| and the line y = -2 on a coordinate plane. They will never intersect.
The second equation is |x-1| = 2. This means that the distance between x and 1 is 2 units on the number line. There are two possible values for x that satisfy this condition: x = -1 and x = 3. You can check this by plugging in these values into the equation and see that they make it true. You can also graph the function y = |x-1| and the line y = 2 on a coordinate plane and see that they intersect at these points.
The third equation is 3-x = 0. This is a simple linear equation that can be solved by adding x to both sides. You will get x = 3 as the only solution. You can graph the function y = 3-x and the line y = 0 on a coordinate plane and see that they intersect at this point.
I hope this helps you understand how to solve these equations. If you need more help, you can use the web search results I found for you.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			