
Длина прямоугольного параллелепипеда в 2 раза больше ширины и на 10 см меньше высоты. Найти обьем
прямоугольного параллелепипеда, если сумма длин всех его ребер = 160 см.

Ответы на вопрос

Каждое ребро в фигуре встречается 4 раза.
4*(x+2x+2x+10) = 160
4*(5x+10) = 160
20x+40 = 160
20x = 120
x = 6 см - ширина.
6*2 = 12 см - длина
12+10 = 22 см - высота.
Объём V = 6*12*22 = 1584 куб.см.



Problem Analysis
We are given the following information about a rectangular parallelepiped: - The length is twice the width. - The length is 10 cm less than the height. - The sum of all the lengths of the parallelepiped is 160 cm.We need to find the volume of the rectangular parallelepiped.
Solution
Let's assign variables to the dimensions of the parallelepiped: - Let l be the length. - Let w be the width. - Let h be the height.From the given information, we can write the following equations: 1. The length is twice the width: l = 2w. 2. The length is 10 cm less than the height: l = h - 10. 3. The sum of all the lengths is 160 cm: 2l + 2w + 2h = 160.
We can solve this system of equations to find the values of l, w, and h.
Substituting equation 1 into equation 2, we get: 2w = h - 10.
Substituting equation 1 into equation 3, we get: 4w + 2h = 160.
Now we have a system of two equations with two variables. We can solve this system to find the values of w and h.
Let's solve the system of equations:
2w = h - 10 (Equation A)
4w + 2h = 160 (Equation B)
From Equation A, we can express h in terms of w: h = 2w + 10.
Substituting this value of h into Equation B, we get: 4w + 2(2w + 10) = 160.
Simplifying the equation: 4w + 4w + 20 = 160.
Combining like terms: 8w + 20 = 160.
Subtracting 20 from both sides: 8w = 140.
Dividing both sides by 8: w = 17.5.
Substituting this value of w into Equation A, we can find h: h = 2(17.5) + 10 = 45.
Now that we have the values of w and h, we can find l using Equation 1: l = 2w = 2(17.5) = 35.
Therefore, the dimensions of the rectangular parallelepiped are: - Length (l) = 35 cm - Width (w) = 17.5 cm - Height (h) = 45 cm.
Calculating the Volume
The volume (V) of a rectangular parallelepiped is given by the formula: V = lwh.Substituting the values we found, we get: V = 35 * 17.5 * 45.
Calculating the volume: V = 33075 cm³.
Therefore, the volume of the rectangular parallelepiped is 33075 cm³.
Answer
The volume of the rectangular parallelepiped is 33075 cm³.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili