
Расстояние между двумя пунктами по реке равно 14 км. Лодка проходит этот путь вниз по реке за 2ч, а
вверх по реке - за 2ч 48мин. Найдите собственную скорость лодки в скорость течения реки. (РЕШИТЕ БЕЗ Х, ПОЖАЛУЙСТА)

Ответы на вопрос

14:2 4/5=14 *5/14 =5км/ч скорость лодки против течения реки
(7-5):2=2:2=1км/ч скорость течения реки
7-1=6км/ч собственная скорость лодки



Problem Analysis
We are given that the distance between two points on a river is 14 km. The boat takes 2 hours to travel downstream and 2 hours 48 minutes to travel upstream. We need to find the speed of the boat in still water and the speed of the river's current.Solution
Let's assume the speed of the boat in still water is x km/h and the speed of the river's current is y km/h.When the boat is traveling downstream, its effective speed is the sum of its speed in still water and the speed of the current. So, the boat's effective speed is (x + y) km/h.
When the boat is traveling upstream, its effective speed is the difference between its speed in still water and the speed of the current. So, the boat's effective speed is (x - y) km/h.
We can use the formula speed = distance / time to calculate the boat's speed in still water and the speed of the river's current.
Calculation
Let's calculate the boat's speed in still water and the speed of the river's current.1. Downstream speed: - Distance = 14 km - Time = 2 hours - Speed = Distance / Time = 14 km / 2 hours = 7 km/h downstream
2. Upstream speed: - Distance = 14 km - Time = 2 hours 48 minutes = 2.8 hours - Speed = Distance / Time = 14 km / 2.8 hours = 5 km/h upstream
Now, we can solve the following system of equations to find the values of x and y:
Equation 1: (x + y) = 7 (downstream speed) Equation 2: (x - y) = 5 (upstream speed)
Adding Equation 1 and Equation 2, we get: (x + y) + (x - y) = 7 + 5 Simplifying, we get: 2x = 12 Dividing both sides by 2, we get: x = 6
Substituting the value of x into Equation 1, we get: (6 + y) = 7 Simplifying, we get: y = 1
Therefore, the boat's speed in still water is 6 km/h and the speed of the river's current is 1 km/h.
Answer
The boat's speed in still water is 6 km/h and the speed of the river's current is 1 km/h.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili