
Найти все значения а, при которых один корень уравнения 2ах^2 - 2x - 3a - 2 = 0 больше 1, а другой
меньше 1.

Ответы на вопрос

Во-первых, отметим, что при а = 0 уравнение станет линейным:
-2x - 2 = 0; x = -1 - имеет единственный корень. Поэтому a ≠ 0.
Теперь решаем, как обычное квадратное уравнение.
D/4 = 1 - 2a(-3a-2) = 6a^2 + 4a + 1 > 0 при любом а.
Теперь находим x:
x1 = (1 - √(6a^2+4a+1))/(2a)
x2 = (1 + √(6a^2+4a+1))/(2a)
Один корень должен быть больше 1, а другой меньше 1.
Возможные варианты:
1)
{ (1 - √(6a^2+4a+1))/(2a) > 1
{ (1 + √(6a^2+4a+1))/(2a) < 1
Приводим к общему знаменателю
{ (1 - √(6a^2+4a+1) - 2a)/(2a) > 0
{ (1 + √(6a^2+4a+1) - 2a)/(2a) < 0
Если a < 0, то
{ 1 - √(6a^2+4a+1) - 2a < 0
{ 1 + √(6a^2+4a+1) - 2a > 0
Переносим корень отдельно
{ √(6a^2+4a+1) > 1 - 2a
{ √(6a^2+4a+1) > 2a - 1
Заметим, что при a < 0 будет 1 - 2a > 0; 2a - 1 < 0
Так как корень арифметический, то 2 неравенство верно при любом a < 0.
1 неравенство возводим в квадрат
6a^2 + 4a + 1 > 1 - 4a + 4a^2
Приводим подобные
2a^2 + 8a > 0
2a(a + 4) > 0
a < 0, поэтому a < -4
Если a > 0, то
{ 1 - √(6a^2+4a+1) - 2a > 0
{ 1 + √(6a^2+4a+1) - 2a < 0
Переносим корень отдельно
{ √(6a^2+4a+1) < 1 - 2a
{ √(6a^2+4a+1) < 2a - 1
Если a ∈ (0; 1/2), то 2a - 1 < 0, тогда 2 неравенство решений не имеет.
Если a > 1/2, то 1 - 2a < 0, тогда 1 неравенство решений не имеет.
Если a = 1/2, то оба неравенства решений не имеют.
√(6a^2+4a+1) < 0
Решений нет
2)
{ (1 - √(6a^2+4a+1))/(2a) < 1
{ (1 + √(6a^2+4a+1))/(2a) > 1
Приводим к общему знаменателю
{ (1 - √(6a^2+4a+1) - 2a)/(2a) < 0
{ (1 + √(6a^2+4a+1) - 2a)/(2a) > 0
Если a < 0, то
{ 1 - √(6a^2+4a+1) - 2a > 0
{ 1 + √(6a^2+4a+1) - 2a < 0
Переносим корень отдельно
Заметим, что при a < 0 будет 1 - 2a > 0; 2a - 1 < 0
{ √(6a^2+4a+1) < 1 - 2a
{ √(6a^2+4a+1) < 0
2 неравенство решений не имеет
Решений нет.
Если a > 0, то
{ 1 - √(6a^2+4a+1) - 2a < 0
{ 1 + √(6a^2+4a+1) - 2a > 0
Переносим корень отдельно
{ √(6a^2+4a+1) > 1 - 2a
{ √(6a^2+4a+1) > 2a - 1
Если a ∈ (0; 1/2), то 2a - 1 < 0, 2 неравенство верно при любом a > 0
1 неравенство возводим в квадрат
6a^2 + 4a + 1 > 1 - 4a + 4a^2
2a^2 + 8a > 0 - Это верно при любом a > 0.
Значит, a ∈ (0; 1/2)
Если a > 1/2, то 1 - 2a < 0, 1 неравенство верно при любом a > 0
2 неравенство возводим в квадрат.
6a^2 + 4a + 1 > 4a^2 - 4a + 1
2a^2 + 8a > 0 - Это верно при любом a > 0
Значит, a > 1/2
Если a = 1/2, то оба неравенства верны:
√(6a^2+4a+1) > 0
Ответ: a ∈ (-oo; -4) U (0; +oo)



Чтобы найти значения параметра \( a \), при которых уравнение \( 2ax^2 - 2x - 3a - 2 = 0 \) имеет один корень больше 1, а другой корень меньше 1, можно воспользоваться дискриминантом.
Общая формула для квадратного уравнения \( ax^2 + bx + c = 0 \) имеет вид: \[ D = b^2 - 4ac \]
Если дискриминант \( D > 0 \), то у уравнения два корня, если \( D = 0 \), то у уравнения один корень (корень кратности 2), а если \( D < 0 \), то уравнение не имеет вещественных корней.
В данном случае, уравнение имеет один корень больше 1 и другой меньше 1. Это означает, что дискриминант должен быть равен 0, чтобы был только один корень, и при этом этот корень должен быть больше 1 и меньше 1.
Итак, зададим условие:
1. Дискриминант равен 0: \[ D = (-2)^2 - 4 \cdot 2 \cdot (-3a-2) = 4 + 24a + 16 = 24a + 20 = 0 \]
2. Решим уравнение относительно \( a \): \[ 24a + 20 = 0 \] \[ 24a = -20 \] \[ a = -\frac{5}{6} \]
Таким образом, при \( a = -\frac{5}{6} \) уравнение \( 2ax^2 - 2x - 3a - 2 = 0 \) будет иметь один корень больше 1 и другой корень меньше 1.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili