Вопрос задан 23.02.2019 в 00:19. Предмет Математика. Спрашивает Земскова Аня.

Между числами 15и1 вставте три числа так, чтобы все пять чисел образовали арифметическую

прогрессию.Укажите сумму найденных трёх чисел
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шигапова Самира.
15+d(n-1)=1   n=5    4d=-14   d= -3.5

15     11.5     8   4.5   1

вставлены три числа 11,5, 8, 4,5
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти три числа, которые образуют арифметическую прогрессию с числами 15 и 1, мы можем использовать формулу арифметической прогрессии:

a_n = a_1 + (n-1)d

где: - a_n - n-ый член прогрессии - a_1 - первый член прогрессии - n - номер члена прогрессии - d - разность прогрессии

В данном случае у нас есть два числа, 15 и 1. Первый член прогрессии (a_1) равен 1. Мы должны найти разность прогрессии (d) и три числа, которые будут следующими в прогрессии.

Чтобы найти разность прогрессии (d), мы можем использовать формулу:

d = (a_n - a_1) / (n - 1)

где: - a_n - n-ый член прогрессии - a_1 - первый член прогрессии - n - номер члена прогрессии

В данном случае, у нас есть два числа, 15 и 1, и мы хотим найти разность прогрессии и три числа, которые будут следующими в прогрессии. Подставим значения в формулу:

d = (15 - 1) / (3 - 1) = 14 / 2 = 7

Теперь, зная разность прогрессии (d), мы можем найти три числа, которые будут следующими в прогрессии:

a_2 = a_1 + d = 1 + 7 = 8

a_3 = a_2 + d = 8 + 7 = 15

a_4 = a_3 + d = 15 + 7 = 22

Таким образом, три числа, которые образуют арифметическую прогрессию с числами 15 и 1, равны 8, 15 и 22.

Чтобы найти сумму этих трех чисел, мы просто сложим их:

8 + 15 + 22 = 45

Таким образом, сумма найденных трех чисел равна 45.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос