Вопрос задан 21.02.2019 в 16:58. Предмет Математика. Спрашивает Есиркесин Аяука.

Помогите пожалуйста решить! 4. Два стрелка делают по одному выстрелу. Вероятность попадания для

первого стрелка равна 0,7, для второго – 0,9. Найти математическое ожидание и дисперсию числа попаданий в мишень.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фаварисова Мария.
Решение во вложенном файле
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение:

Для решения данной задачи, нам необходимо найти математическое ожидание и дисперсию числа попаданий в мишень для двух стрелков.

Пусть X - случайная величина, обозначающая число попаданий в мишень для первого стрелка, и Y - случайная величина, обозначающая число попаданий в мишень для второго стрелка.

Из условия задачи известно, что вероятность попадания для первого стрелка равна 0,7, а для второго стрелка - 0,9.

Математическое ожидание E(X) для случайной величины X можно найти по формуле:

E(X) = p * n

где p - вероятность попадания, n - количество выстрелов.

Аналогично, математическое ожидание E(Y) для случайной величины Y можно найти по формуле:

E(Y) = p * n

где p - вероятность попадания, n - количество выстрелов.

Дисперсия D(X) для случайной величины X можно найти по формуле:

D(X) = p * (1 - p) * n

где p - вероятность попадания, n - количество выстрелов.

Аналогично, дисперсия D(Y) для случайной величины Y можно найти по формуле:

D(Y) = p * (1 - p) * n

где p - вероятность попадания, n - количество выстрелов.

Теперь, подставим известные значения и решим задачу.

Для первого стрелка: - Вероятность попадания (p) = 0,7 - Количество выстрелов (n) = 1

E(X) = 0,7 * 1 = 0,7

D(X) = 0,7 * (1 - 0,7) * 1 = 0,21

Для второго стрелка: - Вероятность попадания (p) = 0,9 - Количество выстрелов (n) = 1

E(Y) = 0,9 * 1 = 0,9

D(Y) = 0,9 * (1 - 0,9) * 1 = 0,09

Таким образом, математическое ожидание числа попаданий в мишень для первого стрелка равно 0,7, а для второго стрелка - 0,9. Дисперсия числа попаданий в мишень для первого стрелка равна 0,21, а для второго стрелка - 0,09.

Пожалуйста, обратите внимание, что данное решение основано на предположении, что каждый стрелок делает только один выстрел. Если есть дополнительные условия или ограничения, пожалуйста, уточните их для более точного решения задачи.

Надеюсь, это помогло! Если у вас есть еще вопросы, не стесняйтесь задавать.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос