
Sin pi/12*cos pi/12*cos pi/6


Ответы на вопрос




To evaluate the expression sin(pi/12) * cos(pi/12) * cos(pi/6), we can break it down step by step.
Step 1: Evaluate sin(pi/12) The sine function (sin) returns the ratio of the length of the side opposite to the angle to the length of the hypotenuse in a right triangle. In this case, we need to find the value of sin(pi/12).
The angle pi/12 is equivalent to 15 degrees. To evaluate sin(15 degrees), we can use the trigonometric identity:
sin(a + b) = sin(a) * cos(b) + cos(a) * sin(b)
In this case, we have a = 0 and b = 15 degrees.
sin(0 + 15) = sin(0) * cos(15) + cos(0) * sin(15) sin(15) = 0 * cos(15) + 1 * sin(15) sin(15) = sin(15)
Therefore, sin(pi/12) is equal to sin(15 degrees).
Step 2: Evaluate cos(pi/12) The cosine function (cos) returns the ratio of the length of the adjacent side to the angle to the length of the hypotenuse in a right triangle. In this case, we need to find the value of cos(pi/12).
Using the same trigonometric identity as before:
cos(a + b) = cos(a) * cos(b) - sin(a) * sin(b)
In this case, we have a = 0 and b = 15 degrees.
cos(0 + 15) = cos(0) * cos(15) - sin(0) * sin(15) cos(15) = 1 * cos(15) - 0 * sin(15) cos(15) = cos(15)
Therefore, cos(pi/12) is equal to cos(15 degrees).
Step 3: Evaluate cos(pi/6) The angle pi/6 is equivalent to 30 degrees. To evaluate cos(30 degrees), we can use the trigonometric identity:
cos(a) = sqrt(1 - sin^2(a))
In this case, we have a = 30 degrees.
cos(30) = sqrt(1 - sin^2(30)) cos(30) = sqrt(1 - (1/2)^2) cos(30) = sqrt(1 - 1/4) cos(30) = sqrt(3/4) cos(30) = sqrt(3)/2
Now that we have the values for sin(pi/12), cos(pi/12), and cos(pi/6), we can substitute them back into the original expression:
sin(pi/12) * cos(pi/12) * cos(pi/6) = sin(15 degrees) * cos(15 degrees) * sqrt(3)/2
Since sin(15 degrees) = cos(15 degrees), we can simplify the expression further:
sin(pi/12) * cos(pi/12) * cos(pi/6) = (sin(15 degrees) * cos(15 degrees))^2 * sqrt(3)/2
Finally, we can square sin(15 degrees) * cos(15 degrees) and multiply by sqrt(3)/2 to get the result:
(sin(15 degrees) * cos(15 degrees))^2 * sqrt(3)/2 = (sin(15 degrees))^2 * (cos(15 degrees))^2 * sqrt(3)/2
I hope this explanation helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili