
Моторная лодка проплыла 48 км по течению реки за 3 часа, а против течения то же расстояние за 4
часа. найдите скорость течения реки и сообственную скорость моторной лодки

Ответы на вопрос

48:4=12 км/ч ск. против теч.
16-12=4 км/ч удвоенная ск. реки
4:2=2 км/ч собств. ск. реки
16-2=14 км/ч или 12+2=14 км/ч ск. лодки



Problem Analysis
We are given that a motorboat traveled a distance of 48 km downstream in 3 hours and the same distance upstream in 4 hours. We need to find the speed of the river's current and the speed of the motorboat.Downstream Speed Calculation
To find the speed of the river's current, we can use the formula:Downstream Speed = Boat Speed + Current Speed
Let's assume the speed of the motorboat is represented by B and the speed of the river's current is represented by C.
Given that the motorboat traveled 48 km downstream in 3 hours, we can set up the equation:
48 km = (B + C) km/h * 3 hours
Simplifying the equation, we have:
48 km = 3B + 3C
Upstream Speed Calculation
Similarly, to find the speed of the river's current, we can use the formula:Upstream Speed = Boat Speed - Current Speed
Using the same assumptions as before, we can set up the equation:
48 km = (B - C) km/h * 4 hours
Simplifying the equation, we have:
48 km = 4B - 4C
Solving the Equations
We now have a system of two equations with two unknowns:Equation 1: 48 km = 3B + 3C
Equation 2: 48 km = 4B - 4C
We can solve this system of equations to find the values of B and C.
Solution
To solve the system of equations, we can use the method of substitution or elimination. Let's use the method of substitution.From Equation 1, we can express C in terms of B:
C = (48 km - 3B) / 3
Substituting this value of C into Equation 2, we have:
48 km = 4B - 4((48 km - 3B) / 3)
Simplifying the equation, we get:
48 km = 4B - (64 km - 4B)
Simplifying further, we have:
48 km = 4B - 64 km + 4B
Combining like terms, we get:
112 km = 8B
Dividing both sides by 8, we find:
B = 14 km/h
Substituting this value of B back into Equation 1, we can find C:
48 km = 3(14 km/h) + 3C
Simplifying the equation, we have:
48 km = 42 km/h + 3C
Subtracting 42 km/h from both sides, we get:
6 km = 3C
Dividing both sides by 3, we find:
C = 2 km/h
Answer
The speed of the river's current is 2 km/h and the speed of the motorboat is 14 km/h.Verification
Let's verify our solution by substituting the values of B and C back into the original equations:Equation 1: 48 km = 3B + 3C
Substituting B = 14 km/h and C = 2 km/h, we have:
48 km = 3(14 km/h) + 3(2 km/h)
Simplifying the equation, we get:
48 km = 42 km/h + 6 km/h
Combining like terms, we have:
48 km = 48 km
The equation is true, which verifies our solution.
Equation 2: 48 km = 4B - 4C
Substituting B = 14 km/h and C = 2 km/h, we have:
48 km = 4(14 km/h) - 4(2 km/h)
Simplifying the equation, we get:
48 km = 56 km/h - 8 km/h
Combining like terms, we have:
48 km = 48 km
The equation is true, which verifies our solution.
Therefore, our solution is correct. The speed of the river's current is 2 km/h and the speed of the motorboat is 14 km/h.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili