
Y=kx+b График симметричен относительно начало кординат ,проходит А(2,10). Найти чему равна сумма k
и b? Помогите

Ответы на вопрос

0 = b
10 = 2k +b это система
b = 0
k = 5
k + b = 5



Finding the Sum of k and b in the Equation y = kx + b
To find the sum of k and b in the equation y = kx + b, we can use the given information that the graph is symmetric with respect to the origin and passes through the point A(2,10).
Let's break down the problem step by step:
1. Symmetry with respect to the origin: - When a graph is symmetric with respect to the origin, it means that if a point (x, y) lies on the graph, then the point (-x, -y) also lies on the graph. - In this case, since the graph passes through point A(2,10), we can conclude that the point (-2,-10) also lies on the graph.
2. Using the points to find the equation: - We have two points on the graph: A(2,10) and (-2,-10). - We can use these points to form two equations and solve for k and b. - Let's use the point-slope form of a linear equation: y - y1 = m(x - x1). - For point A(2,10), the equation becomes: y - 10 = k(x - 2). - For point (-2,-10), the equation becomes: y - (-10) = k(x - (-2)).
3. Simplifying the equations: - The first equation simplifies to: y - 10 = kx - 2k. - The second equation simplifies to: y + 10 = kx + 2k.
4. Finding the sum of k and b: - To find the sum of k and b, we need to isolate k in both equations. - In the first equation, we can rewrite it as: y = kx - 2k + 10. - In the second equation, we can rewrite it as: y = kx + 2k - 10. - By comparing the equations, we can see that b = -2k + 10 and b = 2k - 10. - Equating these two expressions for b, we get: -2k + 10 = 2k - 10. - Solving this equation, we find: 4k = 20, which gives us k = 5. - Substituting k = 5 into either expression for b, we find: b = -2(5) + 10 = 0.
5. Sum of k and b: - The sum of k and b is k + b = 5 + 0 = 5.
Therefore, the sum of k and b in the equation y = kx + b is 5.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili