
Жук ползет вверх по стволу дереву скорость 6см/с. По тому же дереву ползет вниз гусеница. Сейчас
она находиться на 60см ниже жука. С какой скоростью ползет гусеница ,если через 5с растояние между ними будет 100см?решите НЕ УРОВНЕНИЕМ.

Ответы на вопрос

2)100-30=70(см) проползла гусеница за 5 с
3)70/5=14(см) скорость гусеницы



Problem Analysis
We have a beetle crawling up a tree trunk at a speed of 6 cm/s, and a caterpillar crawling down the same tree trunk. The caterpillar is currently 60 cm below the beetle. We need to find the speed at which the caterpillar is crawling if the distance between them becomes 100 cm after 5 seconds.Solution
To solve this problem, we can use the concept of relative motion. Let's assume that the speed of the caterpillar is x cm/s. Since the beetle is crawling up and the caterpillar is crawling down, their relative speed will be the sum of their individual speeds. Therefore, the relative speed between the beetle and the caterpillar is 6 cm/s + x cm/s.We know that the distance between them is currently 60 cm, and we need to find the speed at which the distance becomes 100 cm after 5 seconds. We can use the formula distance = speed × time to calculate the distance traveled by each of them.
For the beetle: - Distance traveled by the beetle = 6 cm/s × 5 s = 30 cm
For the caterpillar: - Distance traveled by the caterpillar = (6 cm/s + x cm/s) × 5 s = 30 cm + 5x cm
According to the problem, the distance between them will be 100 cm after 5 seconds. Therefore, we can set up the equation:
30 cm + 5x cm = 100 cm
Now, let's solve this equation to find the value of x.
Calculation
30 cm + 5x cm = 100 cmSubtracting 30 cm from both sides: 5x cm = 70 cm
Dividing both sides by 5 cm: x cm = 14 cm/s
Answer
Therefore, the caterpillar is crawling at a speed of 14 cm/s.Verification
Let's verify our answer using the given information. After 5 seconds, the beetle will have crawled up by 30 cm (6 cm/s × 5 s), and the caterpillar will have crawled down by 70 cm (14 cm/s × 5 s). The difference between their positions will be 100 cm, as required.This solution is based on the assumption that the beetle and the caterpillar are crawling at a constant speed throughout the given time period.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili