Вопрос задан 16.02.2019 в 07:09. Предмет Математика. Спрашивает Сахарова Таня.

Два поезда идут с постоянной скоростью навстречу друг другу по двум соседним путям.Сначала

расстояние между ними было 75 км.Через четверть часа расстояние между ними стало 15 км.Какое расстояние будет Запиши решение и ответ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пономарёва Юлиана.
1) Через четверть часа поезда преодолеют расстояние:75 - 15 = 60 км
2) Учитывая, что поезда идут с постоянной скоростью, то за следующие четверть часа они преодолеют еще 60 км. До встречи поездов оставалось 15 км и после чего они разъедутся в противоположные стороны на расстояние:60 - 15 = 45 км.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two trains traveling towards each other on parallel tracks. The initial distance between them is 75 km, and after a quarter of an hour, the distance between them becomes 15 km. We need to find the final distance between the trains.

Solution

Let's assume the speed of the first train is x km/h and the speed of the second train is y km/h.

We know that distance = speed × time.

After a quarter of an hour (15 minutes), the first train has traveled a distance of (x/4) km and the second train has traveled a distance of (y/4) km.

The initial distance between the trains is 75 km, so we can write the equation:

75 km = (x/4) km + (y/4) km

Simplifying the equation, we get:

300 km = x + y

We also know that after a quarter of an hour, the distance between the trains becomes 15 km. So we can write another equation:

15 km = 75 km - (x/4) km - (y/4) km

Simplifying the equation, we get:

60 km = (3x/4) km + (3y/4) km

Multiplying both sides of the equation by 4, we get:

240 km = 3x + 3y

Now we have a system of equations:

300 km = x + y 240 km = 3x + 3y

We can solve this system of equations to find the values of x and y.

Solving the System of Equations

To solve the system of equations, we can use the method of substitution or elimination. Let's use the method of elimination.

Multiplying the first equation by 3, we get:

900 km = 3x + 3y

Now we have the following equations:

900 km = 3x + 3y 240 km = 3x + 3y

Subtracting the second equation from the first equation, we eliminate the y term:

(900 km - 240 km) = (3x + 3y) - (3x + 3y)

660 km = 0

This equation is not possible, which means there is no solution to the system of equations.

Conclusion

Based on the given information, there is no solution to the system of equations. Therefore, we cannot determine the final distance between the trains.

Please let me know if there is anything else I can help you with.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос