
Вопрос задан 24.04.2018 в 14:10.
Предмет Математика.
Спрашивает Tulkubaev Ilmir.
Какое наибольшое количество трёхзначных чисел можно написать на доске так, чтобы все они
оканчивались на разные цифры? Б) а так, что любые два числа различались хотя бы в одной из двух последних цифр? В) Даны целые числа, всего их 101. Докажите, что разность каких-то двух этих чисел делится на 100.

Ответы на вопрос

Отвечает Береговая Света.
А) Всего вариантов последних цифр 10, так что написать можно не больше 10. Ровно 10 написать можно, например, так: 100, 101, 102, ..., 109.
Б) Всего вариантов двух последних цифр 10^2 = 100, так что можно написать не больше 100. Ровно 100 написать можно, например, так: 100, 101, 102, ..., 199.
В) Есть всего 100 остатков от деления на 100: 0, 1, ..., 99. Чисел 100, поэтому найдутся два числа с одинаковыми остатками при делении на 100, т.е. это 100n + r, 100m + r, где n, m, r - целые числа. Тогда их разность (100n + r) - (100m + r) = 100(n - m) делится на 100.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili