
Вопрос задан 13.01.2019 в 17:34.
Предмет Математика.
Спрашивает Позик Аня.
1.Найти число, утроенный квадрат которого превышает его куб на максимальное значениеотв:2, 2)
Найдите три первых члена геометрическо прогресии с положительным знаменателем q<1, сумма которой 16/3, а сумма четырех первых членов равна 85/16отв; 4, 1; 1/4.

Ответы на вопрос

Отвечает Почётова Саша.
Нужно найти max(3x^2-x^3).
y=3x^2-x^3
y'=6x-3x^2=3x(2-x)
В точке x=2 производная меняет знак с + на -, поэтому эта точка - локальный максимум.
a/(1-q)=16/3
a*(1-q^4)/(1-q)=85/16
Разделим второе на первое, получим 1-q^4=85/16*3/16=255/256
q^4=1/256
q=1/4
a=16/3*(1-1/4)=4
Итак, члены равны a, aq, aq^2 (т.е. 4, 1, 1/4)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili