
Вопрос задан 26.11.2018 в 01:12.
Предмет Математика.
Спрашивает Бодина Айгуль.
При каких целых значениях а квадратное уравнение ax^2+32x+20=0 имеет рациональные корни, сумма
которых целое число?

Ответы на вопрос

Отвечает Матюхин Семён.
Ax^2+32x+20=0
Что бы корни были рациональными надо чтобы D был полный квадрат, ⇒1024-80а полный квадрат и 1024-80а≥0⇒а≤12,8
Сумма корней равна -32/а,а≠0 , значит чтобы сумма была целой а должно быть делителем числа -32
Получаем a={-32;-16;-8;-4;-2;-1;1;2;4;8}
Что бы корни были рациональными надо чтобы D был полный квадрат, ⇒1024-80а полный квадрат и 1024-80а≥0⇒а≤12,8
Сумма корней равна -32/а,а≠0 , значит чтобы сумма была целой а должно быть делителем числа -32
Получаем a={-32;-16;-8;-4;-2;-1;1;2;4;8}


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili