
Сокращение дробей 75 и 198


Ответы на вопрос




Для сокращения дробей 75 и 198, мы можем найти их наибольший общий делитель (НОД) и поделить оба числа на этот НОД. НОД - это наибольшее число, которое делит оба числа без остатка.
Нахождение НОД
Для нахождения НОД 75 и 198, мы можем использовать различные методы, такие как метод Эвклида или факторизацию чисел. В данном случае, мы воспользуемся методом Эвклида.Метод Эвклида заключается в последовательном делении большего числа на меньшее до тех пор, пока не получим остаток равный нулю. Затем НОД будет равен последнему ненулевому остатку.
Применяя метод Эвклида, мы можем найти НОД 75 и 198 следующим образом:
1. Делим 198 на 75: 198 ÷ 75 = 2 остаток 48 2. Делим 75 на 48: 75 ÷ 48 = 1 остаток 27 3. Делим 48 на 27: 48 ÷ 27 = 1 остаток 21 4. Делим 27 на 21: 27 ÷ 21 = 1 остаток 6 5. Делим 21 на 6: 21 ÷ 6 = 3 остаток 3 6. Делим 6 на 3: 6 ÷ 3 = 2 остаток 0
Последний ненулевой остаток равен 3, поэтому НОД(75, 198) = 3.
Сокращение дробей
Теперь, когда мы знаем НОД, мы можем сократить дроби 75 и 198, разделив оба числа на НОД.75 ÷ 3 = 25 198 ÷ 3 = 66
Таким образом, сокращенные дроби для 75 и 198 равны 25 и 66 соответственно.
Ответ: Сокращенная дробь для числа 75 равна 25, а для числа 198 равна 66.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili