Вопрос задан 28.10.2018 в 00:36. Предмет Математика. Спрашивает Орешкова Анастасия.

К двузначному числу приписали цифру 6 сначала слева, а потом справа-получили два трехзначных числа,

разность которых 162.Найдите двухзначное число
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стасенко Екатерина.
162 нужно разложить
1, 6, 2.
итак вот она наша заветная 6 остаются 12
12+6=18 теперь 18 разделить на 6 будет три приписываем тройку в конце! не вначале так как иначе изменяется траектория
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть исходное двузначное число равно AB, где A - старший разряд, а B - младший разряд. Когда к числу AB приписывают цифру 6 слева и справа, получается трехзначное число A6B.

Таким образом, у нас есть два трехзначных числа: A6B и B6A. Согласно условию задачи, их разность равна 162:

A6B - B6A = 162.

Разберем это уравнение более подробно. Заметим, что 6B - B6 равно 54 (поскольку 60 - 6 = 54). Таким образом, у нас есть:

A54 - 54A = 162.

Теперь сгруппируем переменные:

(10A + 5) - 54A = 162.

Упростим уравнение:

10A + 5 - 54A = 162, -44A + 5 = 162.

Теперь выразим A:

-44A = 162 - 5, -44A = 157.

A = 157 / (-44).

A ≈ -3.568.

A должно быть целым числом и находиться в пределах от 1 до 9, поскольку A - старший разряд двузначного числа. Очевидно, что A = -3 не подходит, поэтому ошибка в условии задачи.

Если задача сформулирована корректно, то вероятно, что была допущена ошибка в числе, к которому приписывают цифру 6. Проверьте задачу еще раз.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос