
7х^2-31х-6=0 решите пример дискриминантом


Ответы на вопрос

x=(-b±√d)/2a = (31±√1129)/14



D=b²-4ca=(-31)²-4*7*(-6)=961+168=1129
x1=31-√1129 \ 14
x2=31+√1129\14



Solving the Quadratic Equation Using the Discriminant
To solve the quadratic equation 7x^2 - 31x - 6 = 0 using the discriminant, we can use the quadratic formula, which is given by:
x = (-b ± √(b^2 - 4ac)) / (2a)
Where: - a is the coefficient of x^2, - b is the coefficient of x, and - c is the constant term.
Calculating the Discriminant
The discriminant, denoted by Δ (delta), is calculated using the formula:
Δ = b^2 - 4ac
Applying the Quadratic Formula
Let's first calculate the discriminant and then use it to solve the given quadratic equation.
Calculating the Discriminant for the Given Equation
For the equation 7x^2 - 31x - 6 = 0: - a = 7 - b = -31 - c = -6
Using the formula Δ = b^2 - 4ac, we can calculate the discriminant:
Δ = (-31)^2 - 4 * 7 * (-6)
Δ = 961 + 168
Δ = 1129
Using the Discriminant to Solve the Equation
Now that we have calculated the discriminant Δ = 1129, we can use it to find the solutions for the given quadratic equation.
The solutions are given by the quadratic formula:
x = (-b ± √Δ) / (2a)
Substituting the values of a, b, and Δ into the quadratic formula, we get:
x = (31 ± √1129) / 14
So, the solutions for the given quadratic equation 7x^2 - 31x - 6 = 0 using the discriminant are:
x = (31 + √1129) / 14 and x = (31 - √1129) / 14


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili