
У"+16у=0. Знайти загальний розв'язок ЛНДР


Ответы на вопрос

у'=-8*у^2+constanta
y=(-8*y^3)/3+constanta



Solving the Linear Diophantine Equation (LDE)
To solve the linear Diophantine equation (LDE) 4x + 16y = 0 and find the general solution, we can use the extended Euclidean algorithm. The general form of a linear Diophantine equation is ax + by = c, where a, b, and c are integers.
Extended Euclidean Algorithm
The extended Euclidean algorithm is used to find the greatest common divisor (GCD) of two numbers and express it as a linear combination of the numbers. In this case, we want to find integers x and y such that 4x + 16y = 0.
Finding the General Solution
Using the extended Euclidean algorithm, we can find the general solution for the given LDE. The general solution for the LDE 4x + 16y = 0 is given by:
x = -4t y = t
where t is an integer.
Conclusion
In conclusion, the general solution to the linear Diophantine equation 4x + 16y = 0 is x = -4t and y = t, where t is an integer. This solution satisfies the given equation and represents all possible integer solutions for x and y that satisfy the equation.
I hope this helps! If you have any further questions or need additional assistance, feel free to ask.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili