
Найди НОК чисел с помощью разложения на множители 18, 42 , 60


Ответы на вопрос

42=7*2*3
60=5*3*4
НОК=5*3^2*4*7*2=2520



Finding the Least Common Multiple (LCM) of 18, 42, and 60
To find the least common multiple (LCM) of 18, 42, and 60 using their prime factorization, we can first express each number as a product of prime factors and then identify the highest power of each prime factor that appears in any of the factorizations.
- Prime Factorization of 18: - 18 = 2 * 3 * 3 - This can be expressed as 2^1 * 3^2
- Prime Factorization of 42: - 42 = 2 * 3 * 7 - This can be expressed as 2^1 * 3^1 * 7^1
- Prime Factorization of 60: - 60 = 2 * 2 * 3 * 5 - This can be expressed as 2^2 * 3^1 * 5^1
Now, we can find the LCM by taking the highest power of each prime factor that appears in any of the factorizations.
The LCM of 18, 42, and 60 is given by: LCM(18, 42, 60) = 2^2 * 3^2 * 5^1 * 7^1 = 2520
Therefore, the least common multiple (LCM) of 18, 42, and 60 is 2520. This is calculated based on the prime factorization method.
I hope this helps! If you have further questions or need additional assistance, feel free to ask.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili