Вопрос задан 29.07.2018 в 11:28. Предмет Математика. Спрашивает Марат Акерке.

СРОЧНО _(((НУЖНА НАЙТИ ДЕСКРИМИНАНТ И КОРНИ 1)4x^2+11-3<02)x^2-81<03)7x^2-4x+1>0c решением

пожалуйста
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лермонтов Михаил.
1) 4x^2+8<0
4(x^2+2)=0
x^2+2=0
x^2=-2
корней нет
Ответ: решений нет
2) x^2-81<0
(x-9)(x+9)<0
x1=9  x2=-9
Ответ:(-9;9)
3) 7x^2-4x+1>0
7x^2-4x+1=0
D=16-28=-12
корней нет!
Ответ:x-любое число
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Quadratic Inequalities and Discriminant

To solve the given quadratic inequalities and find the discriminant and roots, we'll follow a step-by-step approach.

Finding the Discriminant

The discriminant of a quadratic equation in the form of ax^2 + bx + c is given by the formula: Δ = b^2 - 4ac

For the first inequality, 4x^2 + 11x - 3 < 0, the coefficients are: - a = 4 - b = 11 - c = -3

Let's calculate the discriminant using the given coefficients: Δ = 11^2 - 4*4*(-3)

The discriminant for the first inequality is Δ = 121 + 48 = 169.

For the second inequality, x^2 - 81 < 0, the coefficients are: - a = 1 - b = 0 - c = -81

Calculating the discriminant: Δ = 0^2 - 4*1*(-81) The discriminant for the second inequality is Δ = 324.

For the third inequality, 7x^2 - 4x + 1 > 0, the coefficients are: - a = 7 - b = -4 - c = 1

Calculating the discriminant: Δ = (-4)^2 - 4*7*1 The discriminant for the third inequality is Δ = 16 - 28 = -12.

Finding the Roots

The nature of the roots of a quadratic equation can be determined based on the discriminant: - If Δ > 0, the equation has two distinct real roots. - If Δ = 0, the equation has exactly one real root. - If Δ < 0, the equation has no real roots.

Let's analyze the nature of the roots for each inequality based on the calculated discriminants.

Analyzing the Inequalities

1. For the inequality 4x^2 + 11x - 3 < 0: - Discriminant Δ = 169, which is greater than 0. - Therefore, the inequality has two distinct real roots.

2. For the inequality x^2 - 81 < 0: - Discriminant Δ = 324, which is greater than 0. - Hence, the inequality also has two distinct real roots.

3. For the inequality 7x^2 - 4x + 1 > 0: - Discriminant Δ = -12, which is less than 0. - Therefore, the inequality has no real roots.

Conclusion

- The solutions for the inequalities are as follows: 1. 4x^2 + 11x - 3 < 0 has two distinct real roots. 2. x^2 - 81 < 0 has two distinct real roots. 3. 7x^2 - 4x + 1 > 0 has no real roots.

Feel free to ask if you have further questions or need additional assistance!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос