
{ 2x²-y²=-1 2x+y²=17


Ответы на вопрос

2x² + 2x = 16
x² + x - 8 = 0
D = 1 + 32 = 33
x₁ = (-1 - √33)/2
x₂ = (-1 + √33)/2
y² = 17 - 2x = 17 + 1 + √33 = 18 + √33
y₁ = -√(18 + √33)
y₂ = √(18 + √33)
y² = 17 - 2x = 17 + 1 - √33 = 18 - √33
y₃ = -√(18 - √33)
y₄ = √(18 - √33)
Ответ: ( (-1 - √33)/2; -√(18 + √33)); ( (-1 - √33)/2; √(18 + √33)); ( (-1 + √33)/2; -√(18 - √33)); ( (-1 + √33)/2; √(18 - √33));



To solve this system of equations:
- 2x² - y² = -1
- 2x + y² = 17
You can use various methods, such as substitution or elimination. Here, we'll use the elimination method:
First, let's try to eliminate one of the variables. To do that, let's multiply the first equation by 2 and subtract it from the second equation:
(2x + y²) - 2(2x² - y²) = 17 - (-1)
Now, simplify both sides:
2x + y² - 4x² + 2y² = 17 + 1
Combine like terms:
2x - 4x² + 3y² = 18
Now, rewrite the equation in standard form:
-4x² + 2x + 3y² = 18
Next, we can isolate one variable from one of the equations. Let's isolate x from the first equation:
2x² - y² = -1
2x² = y² - 1
x² = (y² - 1)/2
x = ±√((y² - 1)/2)
Now, we can substitute this expression for x into the equation we just derived:
-4((y² - 1)/2) + 2(±√((y² - 1)/2)) + 3y² = 18
Now, simplify and solve for y:
-2(y² - 1) + 2(±√((y² - 1)/2)) + 3y² = 18
-2y² + 2 + 2(±√((y² - 1)/2)) + 3y² = 18
Combine like terms:
y² + 2(±√((y² - 1)/2)) = 18 - 2
y² + 2(±√((y² - 1)/2)) = 16
Now, let's solve for y. First, isolate the square root part:
2(±√((y² - 1)/2)) = 16 - y²
±√((y² - 1)/2) = (16 - y²)/2
Now, square both sides to get rid of the square root:
(y² - 1)/2 = ((16 - y²)/2)²
(y² - 1)/2 = (16 - y²)²/4
Now, cross-multiply to eliminate the fractions:
2(y² - 1) = (16 - y²)²
Expand and simplify:
2y² - 2 = (16 - y²)²
2y² - 2 = 256 - 32y² + y⁴
Now, let's rearrange and set the equation equal to 0:
y⁴ + 2y² - 32y² - 2 - 256 = 0
Combine like terms:
y⁴ - 30y² - 258 = 0
Now, you have a quartic equation in terms of y. Solving this equation may require using numerical methods, as it doesn't factor easily. You can use a graphing calculator or software like WolframAlpha to find the approximate solutions for y. Once you have those values, you can plug them back into the equation for x to find the corresponding x values.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili