
3х/х^3-1 - 5/4х^2+4х+4 - 1/2(1-х)=0


Ответы на вопрос





To solve the equation, we need to find the values of "x" that make the equation true. Let's first simplify the given equation step by step:
Combine all the fractions on the left side of the equation: (3x / (x^3 - 1)) - (5 / (4x^2 + 4x + 4)) - (1 / 2(1 - x)) = 0
The first fraction can be further simplified: 3x / (x^3 - 1) = 3x / (x^3 - 1)
The second fraction can be simplified by factoring out 4 from the denominator: 5 / (4x^2 + 4x + 4) = 5 / 4(x^2 + x + 1)
The third fraction can be simplified: 1 / 2(1 - x) = 1 / (2 - 2x)
Now, the equation becomes: 3x / (x^3 - 1) - 5 / 4(x^2 + x + 1) - 1 / (2 - 2x) = 0
Next, we need to find a common denominator for all the fractions. The common denominator is (4(x^2 + x + 1)(2 - 2x)(x^3 - 1)). Multiply each term by this common denominator to eliminate the fractions:
(4(x^2 + x + 1)(2 - 2x)(x^3 - 1))(3x / (x^3 - 1) - 5 / 4(x^2 + x + 1) - 1 / (2 - 2x)) = 0
Simplifying further:
4(x^2 + x + 1)(2 - 2x)(x^3 - 1)(3x) - 4(x^2 + x + 1)(2 - 2x)(x^3 - 1)(5 / 4(x^2 + x + 1)) - 4(x^2 + x + 1)(2 - 2x)(x^3 - 1)(1 / (2 - 2x)) = 0
Now, we can cancel out some common terms:
4(x^2 + x + 1)(2 - 2x)(x^3 - 1)(3x) - 4(x^2 + x + 1)(2 - 2x)(x^3 - 1)(5 / 4) - 4(x^2 + x + 1)(2 - 2x)(x^3 - 1)(1 / (2 - 2x)) = 0
Simplifying further:
4(x^2 + x + 1)(2 - 2x)(x^3 - 1)(3x) - 5(x^2 + x + 1)(2 - 2x)(x^3 - 1) - 2(x^2 + x + 1)(2 - 2x)(x^3 - 1)(1 / (2 - 2x)) = 0
Now, let's factor out the common terms:
(2 - 2x)(x^3 - 1)(4(x^2 + x + 1)(3x) - 5(x^2 + x + 1) - 2(1 / (2 - 2x))) = 0
Now, we have factored the equation. To find the values of "x," we need to solve each part of the equation for zero:
(2 - 2x) = 0 2 - 2x = 0 -2x = -2 x = -2 / -2 x = 1
(x^3 - 1) = 0 x^3 - 1 = 0 x^3 = 1 x = 1^(1/3) x = 1
(4(x^2 + x + 1)(3x) - 5(x^2 + x + 1) - 2(1 / (2 - 2x))) = 0 Since we already found that x = 1 satisfies this equation, let's substitute x = 1 into the equation: (4(1^2 + 1 + 1)(3 * 1) - 5(1^2 + 1 + 1) - 2(1 / (2 - 2 * 1))) = 0 (4(3) - 5(3) - 2(1 / 0)) = 0 (12 - 15 - 2(∞)) = 0
Here, we run into an issue because we have a division by zero in the equation. Therefore, x = 1 is the only valid solution for this equation.
So, the solution to the equation is x = 1.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili