Вопрос задан 17.07.2018 в 03:54. Предмет Математика. Спрашивает Ломовцев Павел.

На окружности пытаются разместить 30 черных и 20 белых точек так, чтобы среди них можно было

насчитать как можно больше всевозможных троек, являющихся вершинами прямоугольных треугольников с черными вершинами у прямых углов. Каково наибольшее количество таких троек?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дощанов Нурлан.

Есть один факт, который сильно поможет в решении данной задачи:
Прямой угол, вписанный в окружность, опирается на его диаметр.

Таким образом, если мы разместим две какие-либо точки на противоположных сторонах диаметра - то ЛЮБАЯ черная точка будет образовывать с этими двумя точками треугольник с прямым углом при вершине в черной точке.

Возьмем все точки и разместим их попарно на разных сторонах диаметра.
Тогда для любой черной точки найдется 24 пары точек, которые с ней образуют нужный треугольник. Всего черных точек 30, значит искомых троек = 24* 30 = 720

Ответ: 720

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос