
Разность 2\3 части одного числа с 2\5 части другого числа равна 14.Если первое число уменьшить на
25%,а второе число увеличить на 2\9-ю его часть,то сумма этих чисел будет равна 91.Найдите эти числа.Решите пожалуйста системой линейных уравнений.Даю 90 баллов

Ответы на вопрос

Ответ:
Пошаговое объяснение:
проверка решения
(2/3)48-(2/5)45=2*16-2*9=32-18=14
(3/4)48+(11/9)45=3*12+11*5=36+55=91




Давайте обозначим первое число как x, а второе число как y.
Условие 1: Разность 2/3 части одного числа с 2/5 части другого числа равна 14. Это можно записать уравнением: (2/3)x - (2/5)y = 14.
Условие 2: Если первое число уменьшить на 25%, а второе число увеличить на 2/9-ю его часть, то сумма этих чисел будет равна 91. Мы можем записать уравнение для этого условия: (3/4)x + y + (2/9)y = 91.
Теперь у нас есть система уравнений:
- (2/3)x - (2/5)y = 14
- (3/4)x + y + (2/9)y = 91
Для решения системы уравнений, давайте устраняем коэффициент при y в первом уравнении. Умножим оба уравнения на 45, чтобы избавиться от знаменателей:
- 45 * (2/3)x - 45 * (2/5)y = 45 * 14
- 45 * (3/4)x + 45 * y + 45 * (2/9)y = 45 * 91
Упростим уравнения:
- 30x - 18y = 630
- 33.75x + 45y + 10y = 4095
Теперь у нас есть два уравнения:
- 30x - 18y = 630
- 33.75x + 55y = 4095
Далее, избавимся от десятичных дробей во втором уравнении, умножив оба уравнения на 20:
- 20 * 30x - 20 * 18y = 20 * 630
- 20 * 33.75x + 20 * 55y = 20 * 4095
Упростим:
- 600x - 360y = 12600
- 675x + 1100y = 81900
Теперь можем решить эту систему уравнений. Мы будем использовать метод уравнения с методом замещения или сложения/вычитания уравнений.
Умножим первое уравнение на 11 и второе уравнение на 3, чтобы уравнять коэффициенты при y в обоих уравнениях:
- 11 * (600x - 360y) = 11 * 12600
- 3 * (675x + 1100y) = 3 * 81900
Упростим:
- 6600x - 3960y = 138600
- 2025x + 3300y = 245700
Теперь вычтем уравнение 1 из уравнения 2, чтобы избавиться от y:
(2025x + 3300y) - (6600x - 3960y) = 245700 - 138600
Упростим:
2025x + 3300y - 6600x + 3960y = 107100
-4575x + 7260y = 107100
Теперь выразим y:
7260y = 107100 + 4575x
y = (107100 + 4575x) / 7260
y = (107100 / 7260) + (4575x / 7260)
y = 14.77 + 0.63x
Теперь подставим значение y в первое уравнение:
600x - 360 * (14.77 + 0.63x) = 12600
Решим уравнение для x:
600x - 5292 - 226.8x = 12600
373.2x = 12600 + 5292
373.2x = 17992
x = 17992 / 373.2
x ≈ 48.18
Теперь найдем y, используя значение x:
y = 14.77 + 0.63 * 48.18
y ≈ 14.77 + 30.37
y ≈ 45.14
Таким образом, первое число (x) около 48.18, а второе число (y) около 45.14.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili