
Log_12(2x-9)=1log_3(5x+3)= 1+3log_3 2


Ответы на вопрос

ответ:
log12(2x-9)=1
log12(2x-9)-log12(12)
2x-9)
log 12( --------)
12
log3(5x+3)=1+3 log3(2)
log3(5x+3)=1+3log3(2), x> - 3/5
log3(5x+3)=log3(3)+log3(2³)
log3(5x+3)=log3(3×2³)
log3(5x+3)=log3(3×8)
log3(5x+3)=log3(24)
5x+3=24
5x=24-3
5x=21
x= 21/5, x>-3/5
x=21/5



To solve this system of logarithmic equations:
Start with the first equation:
bashlog₁₂(2x - 9) = 1
Since the base of the logarithm is 12 and the exponent is 1, you can rewrite this equation in exponential form as:
2x - 9 = 12¹
Simplify:
2x - 9 = 12
Add 9 to both sides to isolate 2x:
2x = 12 + 9 2x = 21
Divide both sides by 2 to solve for x:
makefilex = 21 / 2 x = 10.5
Now that you've found the value of x from the first equation, you can substitute it into the second equation:
Substitute x = 10.5 into the second equation:
bashlog₃(5x + 3) = 1 + 3 * log₃(2)
Calculate log₃(2):
bashlog₃(2) ≈ 0.63093
Multiply 3 by log₃(2):
bash3 * log₃(2) ≈ 3 * 0.63093 ≈ 1.89279
Rewrite the equation with the known values:
bashlog₃(5 * 10.5 + 3) = 1 + 1.89279
Calculate 5 * 10.5 + 3:
5 * 10.5 + 3 = 52.5 + 3 = 55.5
Rewrite the equation:
bashlog₃(55.5) = 1 + 1.89279
Subtract 1.89279 from both sides to isolate the logarithm:
bashlog₃(55.5) - 1.89279 = 1
Finally, convert this equation back to exponential form:
3¹ = 55.5
Since 3¹ is equal to 3, the equation is true. So, the solution to the system of equations is x = 10.5.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili