
1034. 1) 3x + (5 x - 2) <3 - 2x, 4(5x - 1) - 21x > 1 - 3x;2) 17 - 11x < 9x - 2(5x +
7),6- X > 2(1 - 4x) - 3(1 - 3x).

Ответы на вопрос

Ответ:
{
4(5x−1)−21x≥1−3x
3x+(5x−2)≤3−2x
{
20x−4−21x≥1−3x
8x−2≤3−2x
{
2x≥5
10x≤5
{
x≥2.5
x≤0.5
очевидно, что нет решений.
\left \{ {{7-11x \textless 9x -2(5x+7)} \atop {6-x \textgreater 2(1-4x) - 3(1-3x)}} \right. \left \{ {{7-11x \textless 9x -10x -14} \atop {6-x \textgreater2 - 8x - 3+9x)}} \right. \left \{ {{21 \textless 10x} \atop {7 \textgreater 2x)}} \right. \left \{ {{2.1 \textless x} \atop {3.5\textgreater x)}} \right. \Leftrightarrow x \in (2.1; 3.5){
6−x\textgreater2(1−4x)−3(1−3x)
7−11x\textless9x−2(5x+7)
{
6−x\textgreater2−8x−3+9x)
7−11x\textless9x−10x−14
{
7\textgreater2x)
21\textless10x
{
3.5\textgreaterx)
2.1\textlessx
⇔x∈(2.1;3.5)



To solve these inequalities, you can follow the same basic principles as you would with equations. The main difference is that when you multiply or divide by a negative number, you need to reverse the inequality sign. Here are the solutions for each of your inequalities:
- 3x + (5x - 2) < 3 - 2x
First, simplify the expression:
3x + 5x - 2 < 3 - 2x
Combine like terms:
8x - 2 < 3 - 2x
Add 2x to both sides to get the x terms on one side:
10x - 2 < 3
Add 2 to both sides:
10x < 5
Now, divide both sides by 10:
x < 5/10
Simplify:
x < 1/2
- 4(5x - 1) - 21x > 1 - 3x
First, distribute the 4 on the left side:
20x - 4 - 21x > 1 - 3x
Combine like terms:
(20x - 21x) - 4 > 1 - 3x
-x - 4 > 1 - 3x
Add 3x to both sides to get the x terms on one side:
2x - 4 > 1
Add 4 to both sides:
2x > 5
Now, divide both sides by 2:
x > 5/2
- 17 - 11x < 9x - 2(5x + 7)
First, distribute the -2 on the right side:
17 - 11x < 9x - 10x - 14
Combine like terms:
17 - 11x < -x - 14
Add 11x to both sides to get the x terms on one side:
17 < 10x - 14
Add 14 to both sides:
31 < 10x
Now, divide both sides by 10:
31/10 < x
- 6 - x > 2(1 - 4x) - 3(1 - 3x)
First, distribute on both sides:
6 - x > 2 - 8x - 3 + 9x
Combine like terms:
6 - x > -1 + x
Add x to both sides to get the x terms on one side:
6 > -1 + 2x
Add 1 to both sides:
7 > 2x
Now, divide both sides by 2:
7/2 > x
So, the solutions to the given inequalities are as follows:
- x < 1/2
- x > 5/2
- x > 31/10
- x < 7/2


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili