Вопрос задан 05.06.2023 в 23:46. Предмет Математика. Спрашивает Сафронова Лиза.

Y'(4+x²)=4+y², y(0)=π/2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given differential equation, we can follow these steps:

Step 1: Rewrite the equation in a more standard form. Step 2: Separate variables. Step 3: Integrate both sides. Step 4: Solve for the constant of integration using the initial condition. Step 5: Write the final solution.

Let's go through these steps one by one.

Step 1: Rewrite the equation in a more standard form. The given differential equation is: y'(4 + x²) = 4 + y²

Step 2: Separate variables. To separate variables, we'll move all the terms involving y to one side and all the terms involving x to the other side: y' = (4 + y²) / (4 + x²)

Step 3: Integrate both sides. Integrating both sides of the equation gives: ∫1/(4 + y²) dy = ∫1/(4 + x²) dx

Step 4: Solve for the constant of integration using the initial condition. To solve the integrals, we can use a trigonometric substitution. Let y = 2tan(theta), and dy = 2sec²(theta) d(theta). Substituting these values, we have: ∫1/(4 + 4tan²(theta)) * 2sec²(theta) d(theta) = ∫1/(4 + x²) dx

Simplifying the left side: ∫2sec²(theta)/(4 + 4tan²(theta)) d(theta) = ∫1/(4 + x²) dx

Simplifying the denominator on the left side: ∫sec²(theta)/(1 + tan²(theta)) d(theta) = ∫1/(4 + x²) dx

Using the identity: sec²(theta) = 1 + tan²(theta) ∫1 d(theta) = ∫1/(4 + x²) dx

Integrating both sides: θ = arctan(x/2) + C1

Step 5: Write the final solution. Now, we need to solve for y in terms of x using the initial condition y(0) = π/2. Substituting x = 0 into the equation above: θ = arctan(0/2) + C1 θ = 0 + C1 θ = C1

Using the initial condition y(0) = π/2: π/2 = C1

Substituting C1 back into the equation θ = arctan(x/2) + C1: θ = arctan(x/2) + π/2

Since y = 2tan(theta): y = 2tan(arctan(x/2) + π/2) y = 2tan(arctan(x/2)) + 2tan(π/2) y = 2(x/2) + ∞ (since tan(π/2) is undefined)

Therefore, the final solution to the given differential equation with the initial condition y(0) = π/2 is: y = x + ∞

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос