
Вопрос задан 09.04.2021 в 12:57.
Предмет Математика.
Спрашивает Ярмоленко Максим.
Log_6^(2x-3)=log_6^(x+5) СРОЧНО!!! ЗАВТРА СДАВАТЬ


Ответы на вопрос

Отвечает Поднебесная Виолетта.
Так как основания равны то
2х-3=х+5
х=5+3
х=8
2х-3=х+5
х=5+3
х=8



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Решение:
Мы можем использовать свойство логарифма, которое гласит: log_a(b^c) = c*log_a(b), чтобы упростить данное уравнение.
Применяя это свойство к обоим сторонам уравнения, получаем:
(2x-3) * log_6(6) = (x+5) * log_6(6)
Так как log_a(a) = 1 для любого a, то log_6(6) = 1, поэтому мы можем упростить это уравнение следующим образом:
2x - 3 = x + 5
Теперь мы можем решить это уравнение, выражая x:
2x - x = 5 + 3
x = 8
Таким образом, решением данного уравнения является x = 8.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili