
Log( основание=0,7)(x+5)<0


Ответы на вопрос

удовлетворяет
ОДЗ:
х+5>0
Ответ: х€(-4;+∞)



The given inequality is a logarithmic inequality in the form of:
log_{0.7}(x+5) < 0
To solve this inequality, we can use the following steps:
Step 1: Find the domain of the logarithmic function. Since the base of the logarithm is 0.7, which is between 0 and 1, the argument (x+5) of the logarithmic function must be positive. Therefore, the domain of the function is x+5 > 0 or x > -5.
Step 2: Rewrite the inequality in exponential form. Using the definition of logarithms, we can rewrite the inequality as:
0.7^0 < x+5
Step 3: Simplify the inequality. 0.7^0 is equal to 1, so the inequality becomes:
1 < x+5
Subtracting 5 from both sides, we get:
-4 < x
Step 4: Check the solution. We need to check that the solution we found in step 3 satisfies the domain of the logarithmic function. Since the domain is x > -5 and our solution is x > -4, the solution satisfies the domain.
Therefore, the solution to the inequality log_{0.7}(x+5) < 0 is x > -4.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili