
Сэм закрасил 9 квадратиков на рисунке белым, серым или черным, как показано на рисунке. Какое
наименьшее количество квадратов ему придется перекрасить, чтобы любые два квадрата с общей стороны были покрашены по разному.

Ответы на вопрос




Чтобы найти наименьшее количество квадратов, которые Сэму придется перекрасить, чтобы любые два квадрата с общей стороной были покрашены по-разному, рассмотрим все возможные расстановки цветов на рисунке. Предположим, что белый цвет обозначается как "W", серый как "G" (от англ. gray) и черный как "B".
Если первый квадрат закрашен белым (W), то второй квадрат может быть закрашен серым (G) или черным (B), и так далее. Таким образом, у нас есть 3 варианта для первого квадрата, и для каждого из этих вариантов есть 2 варианта для второго квадрата. Это дает нам общее количество вариантов: 3 * 2 = 6.
Однако в этих 6 вариантах есть один случай, когда первый и второй квадраты имеют одинаковый цвет. Чтобы исключить этот случай, необходимо перекрасить один из квадратов. Таким образом, наименьшее количество квадратов, которые Сэму придется перекрасить, чтобы любые два квадрата с общей стороной были покрашены по-разному, составляет 6 - 1 = 5.
Следовательно, Сэму придется перекрасить как минимум 5 квадратов.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili