
Вопрос задан 27.02.2021 в 19:53.
Предмет Математика.
Спрашивает Чебутаева Аня.
Составьте уравнение к задаче, взяв за x длину стороны исходного квадрата. Решать урав- нение не
надо. Задача: «Одну сторону квадрата уменьшили на 10 см, а другую увеличили на 5 см. Площадь полу- чившегося прямоугольника 55 кв. см. Какова была длина стороны исходного квадрата?» Ответ: уравнение имеет вид

Ответы на вопрос

Отвечает Лузанова Мария.
Если х-длина стороны квадрата
х-10-стала длина первой стороны
х+5-стала длина второй стороны
Площадь S=(x-10)*(x+5)=x^2-5x-50=55-по условию
x^2-5x-50=55-нужное уравнение
или x^2-5x-105=0
х-10-стала длина первой стороны
х+5-стала длина второй стороны
Площадь S=(x-10)*(x+5)=x^2-5x-50=55-по условию
x^2-5x-50=55-нужное уравнение
или x^2-5x-105=0



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Пусть x - длина стороны исходного квадрата.
Если одну сторону квадрата уменьшили на 10 см, то новая сторона будет (x - 10) см.
Если другую сторону увеличили на 5 см, то новая сторона будет (x + 5) см.
Получившийся прямоугольник имеет площадь 55 кв. см, поэтому уравнение будет следующим:
(x - 10)(x + 5) = 55


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili