
Lg(x-5)-lg(5x-19)=0 log3(x-2)+log3(x+16)=2 lg(x+2)=lg(x-6)


Ответы на вопрос

Ответ:
Пошаговое объяснение:
lg(x-5)-lg(5x-19)=0
ОДЗ: x-5>0 x>5 5x-19>0 5x>19 x>3,8 ⇒ x∈(5;+∞)
lg(x-5)=lg(5x-19)
x-5=5x-19
4x=14 |÷4
x=3,5 ∉ОДЗ
Ответ: нет решения.
log₃(x-2)+log₃(x+16)=2
ОДЗ: x-2>0 x>2 x+16>0 x>-16 ⇒ x∈(2;+∞)
log₃((x-2)(x+16))=2
x²+14x-32=3²
x²+14x-32=9
x²+14x-41=0 D=32
x₁=-7-2√2 ∉ОДЗ х₂=-7+2√2 ∉ОДЗ
Ответ: нет решения.
lg(x+2)=lg(x-6)
x+2=x-6
2≠-6
Ответ: нет решения.



Let's solve the given equations step by step:
- Equation: lg(x - 5) - lg(5x - 19) = 0
We can simplify this equation using logarithmic properties. The subtraction of logarithms is equivalent to the division of the arguments:
lg((x - 5) / (5x - 19)) = 0
Since lg(1) = 0, we can rewrite the equation as:
(x - 5) / (5x - 19) = 1
Now we can solve for x:
(x - 5) = (5x - 19)
Simplifying the equation:
x - 5 = 5x - 19
Rearranging terms:
4x = 14
Dividing by 4:
x = 14 / 4
x = 7/2 or x = 3.5
Therefore, one solution is x = 3.5.
- Equation: log3(x - 2) + log3(x + 16) = 2
Using the logarithmic property, the sum of logarithms is equivalent to the multiplication of the arguments:
log3((x - 2) * (x + 16)) = 2
We can rewrite the equation using the exponential form:
3^2 = (x - 2) * (x + 16)
9 = x^2 + 14x - 32
Rearranging terms:
x^2 + 14x - 41 = 0
Unfortunately, this equation doesn't factor easily, so we'll use the quadratic formula to solve for x:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 1, b = 14, and c = -41:
x = (-14 ± √(14^2 - 4(1)(-41))) / (2(1))
x = (-14 ± √(196 + 164)) / 2
x = (-14 ± √(360)) / 2
x = (-14 ± 6√10) / 2
x = -7 ± 3√10
Therefore, the solutions are x ≈ -7 + 3√10 and x ≈ -7 - 3√10.
- Equation: lg(x + 2) = lg(x - 6)
Since both sides have the same logarithm base and are equal, we can set their arguments equal to each other:
x + 2 = x - 6
By subtracting x from both sides, we get:
2 = -6
This equation is inconsistent and has no solution.
To summarize:
- Equation 1 has one solution: x = 3.5.
- Equation 2 has two solutions: x ≈ -7 + 3√10 and x ≈ -7 - 3√10.
- Equation 3 has no solution.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili