
(x + 1)(x - 4)(3x - 6) < 0 Срчн


Ответы на вопрос





To find the solution to the inequality (x + 1)(x - 4)(3x - 6) < 0, we can analyze the signs of the expressions involved and determine the intervals where the inequality is satisfied.
Let's break it down step by step:
- Find the critical points: To determine the critical points, we set each factor equal to zero and solve for x:
x + 1 = 0 -> x = -1 x - 4 = 0 -> x = 4 3x - 6 = 0 -> x = 2
So, the critical points are x = -1, x = 2, and x = 4.
- Create sign intervals: We'll divide the number line into four intervals based on the critical points:
Interval 1: (-∞, -1) Interval 2: (-1, 2) Interval 3: (2, 4) Interval 4: (4, +∞)
- Determine the sign of each factor in each interval: Now, we'll determine the sign of each factor in each interval.
Interval 1: (-∞, -1) In this interval, we can choose x = -2 (a value less than -1) to evaluate the signs: (x + 1) = (-2 + 1) = -1 (negative) (x - 4) = (-2 - 4) = -6 (negative) (3x - 6) = (3(-2) - 6) = -12 (negative)
Interval 2: (-1, 2) In this interval, we can choose x = 0 (a value between -1 and 2) to evaluate the signs: (x + 1) = (0 + 1) = 1 (positive) (x - 4) = (0 - 4) = -4 (negative) (3x - 6) = (3(0) - 6) = -6 (negative)
Interval 3: (2, 4) In this interval, we can choose x = 3 (a value between 2 and 4) to evaluate the signs: (x + 1) = (3 + 1) = 4 (positive) (x - 4) = (3 - 4) = -1 (negative) (3x - 6) = (3(3) - 6) = 3 (positive)
Interval 4: (4, +∞) In this interval, we can choose x = 5 (a value greater than 4) to evaluate the signs: (x + 1) = (5 + 1) = 6 (positive) (x - 4) = (5 - 4) = 1 (positive) (3x - 6) = (3(5) - 6) = 9 (positive)
- Determine the sign of the whole expression: To determine the sign of the whole expression (x + 1)(x - 4)(3x - 6), we look at the signs of each factor in each interval:
Interval 1: (-∞, -1)
- = - (negative)
Interval 2: (-1, 2)
- = + (positive)
Interval 3: (2, 4)
- = - (negative)
Interval 4: (4, +∞)
- = + (positive)
- Identify the solution: From the sign analysis, we can see that the expression (x + 1)(x - 4)(3x


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili