
1)lxl+3,2=8 2)lxl-5= 0


Ответы на вопрос

2x=5 x=-5



- To solve the equation |x + 3| = 8, we need to consider two cases:
Case 1: (x + 3) = 8 In this case, we remove the absolute value by considering the positive expression inside the absolute value bars. x + 3 = 8 Subtract 3 from both sides: x = 8 - 3 x = 5
Case 2: -(x + 3) = 8 Here, we consider the negative expression inside the absolute value bars. -x - 3 = 8 Add 3 to both sides: -x = 8 + 3 -x = 11
To isolate x, multiply both sides by -1 to change the sign of -x: x = -11
So, the solution to the equation |x + 3| = 8 is x = 5 and x = -11.
- The equation |x| - 5 = 0 can be solved as follows:
|x| - 5 = 0 Add 5 to both sides: |x| = 5
To solve for x, we consider two cases:
Case 1: x = 5 In this case, the absolute value of x is positive, so |x| is equal to x. Therefore, x = 5 is a valid solution.
Case 2: -x = 5 Here, the absolute value of x is negative, so |x| is equal to -x. -x = 5 Multiply both sides by -1 to isolate x: x = -5
Therefore, the solutions to the equation |x| - 5 = 0 are x = 5 and x = -5.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili