
Найдите наименьшее общее кратное чисел A и B если A равен 5 x 5 x 7 х 13 б равен 5 х 7 х 7 х 13


Ответы на вопрос








Для нахождения наименьшего общего кратного (НОК) чисел A и B необходимо определить максимальную степень каждого простого множителя, которая встречается в числах A и B, и перемножить эти степени.
Разложим числа A и B на их простые множители:
A = 5 x 5 x 7 x 13 B = 5 x 7 x 7 x 13
Проанализируем каждый простой множитель и его максимальную степень в числах A и B:
Простой множитель 5: максимальная степень в A - 2, максимальная степень в B - 1. Простой множитель 7: максимальная степень в A - 1, максимальная степень в B - 2. Простой множитель 13: максимальная степень в A - 1, максимальная степень в B - 1.
Теперь умножим все простые множители, возведенные в соответствующие степени:
НОК(A, B) = 5^2 x 7^2 x 13^1
Вычислим значение НОК(A, B):
НОК(A, B) = 25 x 49 x 13 = 30625
Таким образом, наименьшее общее кратное чисел A и B равно 30625.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili