Вопрос задан 21.07.2020 в 03:00. Предмет Геометрия. Спрашивает Дудак Дина.

из некоторой точки пространства проведены к данной плоскости перпендикуляр равный 6 см и наклонная

длинной 9 см. Найдите проекцию перпендикуляра на наклонную?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алиева Саша.

Получили прямоугольный треугольник, одним катетом АС которого является перпендикуляр, а наклонная АВ является гипотенузой, проекция на плоскость ВС - это второй катет. Ищем его по теореме Пифогора.

√(81-36)=√45см

Получили треугольник АВС, в котором АС=6см, АВ=9см, ВС=√45см

Из вершины прямого угла С проводим перпендикуляр СН на гипотенузу АВ. АН - это и есть проекция перпендикуляра АС на наклонную АВ. Можно решать через подобие полученных треугольников, но лучше по теореме Пифагора.

Пусть ВН=х, тогда АН=9-х

Из треуг. АНС:  CH^2=36-(9-x)^2

Из треуг. СНВ:  CH^2=45-x^2

Приравниваем:

36-(9-x)^2=45-x^2

36-81+18х-x^2==45-x^2

18x=90

x=5

CH=√(45-25)=√20=2√5см

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос