
Вопрос задан 19.07.2020 в 04:24.
Предмет Геометрия.
Спрашивает Левашов Даня.
Диагонали ромба относятся как 3:5.Периметр ромба равен 136. Найдите высоту ромба


Ответы на вопрос

Отвечает Романова Софья.
Диагонали ромба 5х и 3х
Sромба = 5х * 3х / 2 = 15x^2 / 2
Sромба = a * h
a*h = 15x^2 / 2
h = 15x^2 / (2a)
a = 136/4 = 34
диагонали ромба взаимно перпендикулярны и делятся точкой пересечения пополам...
из получившегося прямоугольного треугольника можно записать:
(5x/2)^2 + (3x/2)^2 = 34^2
25x^2 + 9x^2 = 34*34*4
x^2 = 34*4
h = 15*34*4 / (2*34) = 30
Sромба = 5х * 3х / 2 = 15x^2 / 2
Sромба = a * h
a*h = 15x^2 / 2
h = 15x^2 / (2a)
a = 136/4 = 34
диагонали ромба взаимно перпендикулярны и делятся точкой пересечения пополам...
из получившегося прямоугольного треугольника можно записать:
(5x/2)^2 + (3x/2)^2 = 34^2
25x^2 + 9x^2 = 34*34*4
x^2 = 34*4
h = 15*34*4 / (2*34) = 30


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili