Вопрос задан 13.06.2020 в 07:18. Предмет Геометрия. Спрашивает Бородина Анастасия.

докажите, что биссектрисы внешних углов при вершинах А и Б и биссектриса угла С пересекаются в

одной точке
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сватко Максим.
Опустим перпендикуляры ОР, ОН и ОМ на продолжения сторон угла С треугольника АВС (на стороны внешних углов АВР и ВАН и сторону АВ этого треугольника) .  Прямоугольные треугольники ОРВ и ОМВ равны, так как равны их острые углы (ОВ - биссектриса угла АВР), а гипотенуза ОВ общая.
Точно так же равны прямоугольные треугольники ОНА и ОМВ, так как равны их острые углы  (ОА - биссектриса угла ВАН), а гипотенуза ОА общая.
Следовательно, катеты ОР и ОН равны, а это значит, что точка О равноудалена от сторон СР и СН угла С. Значит прямая ОС является биссектрисой угла С. То есть биссектрисы внешних углов при вершинах А и В и биссектриса угла С пересекаются в одной точке.
Что и требовалось доказать.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос