Вопрос задан 16.05.2020 в 22:28. Предмет Геометрия. Спрашивает Широченко Инуська.

Треугольник АВС-равнобедренный с основанием АС, отрезок BD-его медиана, О-точка на медиане. На

стороне АВ взята точка К, на стороне ВС-точка М, причем ВК=ВМ. Докажите, что ОКВ и ОМВ равны. СРОЧНО!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Михеева Мария.
Т.к. АВС равнобедренный BD-биссектриса
КВО=МВО (биссектриса)
ОВ-общая сторона
КВ=ВМ (по условию)
из этих трех утверждений следует равенство треугольников ОКВ и ОМВ
0 0
Отвечает Киося Наташа.
Рассмотрим треугольники ОКВ и ОМВ: угол КВО = углу ОВМ(т.к. ВD это медиана и биссекириса пр признакам равнобедренного треугольника); BK=BM(по условию);BO-общая;значит треугольник OKB = треугольнику OMB по первому признаку равенства треугольников.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос