
Вопрос задан 06.05.2020 в 13:43.
Предмет Геометрия.
Спрашивает Денекин Дима.
BO-перпендикуляр к плоскости α, ВА и ВС наклонные, ОА и ОС их проекции на плоскость α, причем сумма
их длин равна 24см. Найдите расстояние от точки В до плоскости α, если АВ=4√6см и ВС=12√2

Ответы на вопрос

Отвечает Poroshenko Daniil.
Пусть проекция ОА = Х см, тогда проекция ОС = (24 – Х) см. Рассм. Треугольник АОВ (угол О = 90 ) По теореме Пифагора: ВО2 = АВ2 – АО2 ВО2 = (4√6)2 – Х2 ВО2 = 96 – Х2 Рассм. Треугольник ВОС (угол О = 90) ВО2 = ВС2 – ОС2 ВО2 = (12 √2)2 – (24 – Х)2 ВО2 = 288 – 576 +48Х – Х2 (приведем подобные) ВО2 = 48Х – Х2 – 288 Приравниваем: 96 – Х2 = 48Х – Х2 – 288 48Х = 288 + 96 48Х = 384 Х=8 Подставляем полученное число в первое уравнение: ВО2 = 96 – 64 ВО = √32 ВО = 4 √2


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili