Вопрос задан 05.05.2020 в 23:55. Предмет Геометрия. Спрашивает Топский Арсеха.

Радиус ОА окружности с центром О проходит через середину хорды ВС . Через точку В проведена

касательная к окружности , пересекающая прмую ОА в точку М. Докажите , что луч ВА - биссектриса угла СВМ Рисунок обязателен.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Овчинникова Алла.
∠MBA=∠BOA/2 как угол между касательной и хордой в точку касания.
Т.к. треугольник BOC равнобедренный, то OA⊥BC. Значит ∠OBC=90°-∠BOA. Значит ∠CBM=∠OBM-∠OBC=90°-(90°-∠BOA)=∠BOA. Итак, ∠MBA=∠CBM/2, т.е. BA - биссектриса ∠CBM.





0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос