Вопрос задан 02.05.2020 в 03:20. Предмет Геометрия. Спрашивает Кот Ксения.

1. В окружность вписан треугольник АВС, сторона которого АС совпадает с диаметром. Из т. В к АС

проведен перпендикуляр ВК, причем АК=4, а КС=16. Найти: ВК, АВ, ВС, АС.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пупавцев Сергей.

Если в окружность вписан треугольник АВС сторона которого совпадает с диаметром, то этот треугольник прямоугольный. (Вершина В лежит на окружности и угол АВС опирается на диаметр, значит угол В - прямой). Тогда: АС=АК+КС=4+16=20. 

ВК - это высота. Квадрат высоты из прямого угла в прямоугольном треугольнике равен произведению отрезков, на которые высота делит гипотенузу. Тогда ВК^2=4*16. ВК=8. Треугольники АКВ и КВС - прямоугольные из картинки. (а треугольнике АКВ прямой угол АКВ, в треугольнике СВК прямой угол ВКС). 

Значит в них зная две стороны (ВК и либо АК либо КС) можно найти третью по теореме Пифагора. АВ^2=AK^2+KB^2=4^2+8^2=80. AВ=корень из 80.

ВС^2=8^2+16^2=64+256=320

BC=корень из 320. 

 

Ответ: ВК=8

АВ=корень из 80

ВС=корень из 320

АС=20

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос