
Вопрос задан 02.06.2018 в 02:45.
Предмет Геометрия.
Спрашивает Муракаев Камиль.
Основание пирамиды-ромб с диагональю 10см и 18см. высота пирамиды проходит через точку пересечения
диагоналей ромба. меньшее боковое ребро 13см. найти большее боковое ребро пирамиды и площадь

Ответы на вопрос

Отвечает Беккер Надежда.
Пусть основание пирамиды - ромб АВСД, а вершина пирамиды - точка Р. Пусть диагонали ромба пересекаются в точке О ( ею же они делятся пополам), тогда РО - высота пирамиды. пусть ВД=10см, а АС= 18 см. Тогда меньшее ребро РД=13 см и треугольник ОРД - прямоугольный. По теореме Пифагора РО² =РД² - ОД² = 13²-5²=144, РО =12. Аналогично из прямоугольного треугольника АРО находим АР² = АО²+ РО² = 9²+12²=225, АР=15.
Ответ:15см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili