Вопрос задан 02.06.2018 в 02:45. Предмет Геометрия. Спрашивает Муракаев Камиль.

Основание пирамиды-ромб с диагональю 10см и 18см. высота пирамиды проходит через точку пересечения

диагоналей ромба. меньшее боковое ребро 13см. найти большее боковое ребро пирамиды и площадь
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Беккер Надежда.

Пусть основание пирамиды - ромб АВСД, а вершина пирамиды - точка Р. Пусть диагонали ромба пересекаются в точке О ( ею же они делятся пополам), тогда РО - высота пирамиды. пусть ВД=10см, а АС= 18 см. Тогда меньшее ребро РД=13 см и треугольник ОРД - прямоугольный. По теореме Пифагора РО² =РД² - ОД² = 13²-5²=144, РО =12. Аналогично из прямоугольного треугольника АРО находим АР² = АО²+ РО² = 9²+12²=225, АР=15.
Ответ:15см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос