
Вопрос задан 21.04.2020 в 03:06.
Предмет Геометрия.
Спрашивает Гасанов Гусейн.
Доказать что в равнобедренном треугольнике биссектрисы, проведенные к. бок. Стороны равны.


Ответы на вопрос

Отвечает Вергун Алеся.
1)проведём биссектрисы АА¹ и ВВ¹
2)Мы знаем, что у равнобедренного треугольника углы при основании равны, тогда биссектрисы делят углы на одинаковые, то есть:
углы САА¹ = С¹АА¹ = С¹СА = А¹СС¹
3)Рассмотрим треугольники С¹АС и А¹СА:
1) угол С¹СА = угол А¹АС
2) угол С¹АС = угол А¹СА (так как углы при основании у равнобедренного треугольника равны)
3) сторона АС - общая
Из этого следует, что треугольники С¹АС и А¹СА равны, и тогда АА¹=СС¹, что и требовалось доказать


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili