Вопрос задан 08.04.2020 в 23:54. Предмет Геометрия. Спрашивает Барневич Сергей.

Найдите угол между касательной и хордой, которые проведены из одной точки, если хорда равна

половине диаметра окружности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Давыдов Артём.

Пользуясь рисунком, (см. вложение) и зная, что AB — диаметр окружности, CM = \dfrac{AB}{2} — хорда окружности, определим \angle \alpha.

В окружности половиной диаметра являются радиусы, значит, эти радиусы будут равны и хорде: CO = OM = CM

В образовавшемся треугольнике \triangle COM получается, что все три стороны по длине равны, следовательно, этот треугольник является равносторонним, у которого все углы равны по 60^{\circ}.

Как известно, точка касания касательной к окружности и радиуса окружности пересекаются под прямым углом (90^{\circ}).

Отсюда следует, чтобы узнать \angle \alpha, нужно найти разность развёрнутого угла (180^{\circ}) от суммы других известных углов:

\angle \alpha = 180^{\circ} - (90^{\circ} + 60^{\circ}) = 30^{\circ}

Ответ: 30°

0 0
Отвечает Агеева Виктория.

Очевидно, этот угол равен 30 градусам. Длина хорды равна радиусу. Треугольник с вершинами : центр окружности , концы хорды -равносторонний. Одна из его сторон перпендикулярна касательной. Отсюда ответ: 90-60=30.



0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос