Вопрос задан 16.03.2020 в 08:50. Предмет Геометрия. Спрашивает Тупицына Александра.

Помогите решить простенькую задачку! Дана треугольная пирамида ABCD, у которой угол ADC=углу ADB=90

градусов. Известно, что AC=AB. Докажите, что треугольник CDB - равнобедренный.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Barbq-Junior Андрюха.
Дана треугольная пирамида ABCD, у которой ∠ADC = ∠ADB=90°. Известно, что AC = AB. Докажите, что треугольник CDB - равнобедренный.
---------------------------------------
АС и АВ являются гипотенузами прямоугольных треугольников
Катет АД - общий
Вторые катеты прямоугольных треугольников можно найти по т. Пифагора
DC = √(AC² - AD²)
DB = √(AB² - AD²)
Поскольку АС = АВ

Значит, CD = CB, и ΔCDB - равнобедренный.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос