
Вопрос задан 16.03.2020 в 08:50.
Предмет Геометрия.
Спрашивает Тупицына Александра.
Помогите решить простенькую задачку! Дана треугольная пирамида ABCD, у которой угол ADC=углу ADB=90
градусов. Известно, что AC=AB. Докажите, что треугольник CDB - равнобедренный.

Ответы на вопрос

Отвечает Barbq-Junior Андрюха.
Дана треугольная пирамида ABCD, у которой ∠ADC = ∠ADB=90°. Известно, что AC = AB. Докажите, что треугольник CDB - равнобедренный.
---------------------------------------
АС и АВ являются гипотенузами прямоугольных треугольников
Катет АД - общий
Вторые катеты прямоугольных треугольников можно найти по т. Пифагора
DC = √(AC² - AD²)
DB = √(AB² - AD²)
Поскольку АС = АВ
---------------------------------------
АС и АВ являются гипотенузами прямоугольных треугольников
Катет АД - общий
Вторые катеты прямоугольных треугольников можно найти по т. Пифагора
DC = √(AC² - AD²)
DB = √(AB² - AD²)
Поскольку АС = АВ
Значит, CD = CB, и ΔCDB - равнобедренный.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili