Вопрос задан 08.01.2020 в 10:47. Предмет Геометрия. Спрашивает Жубатова Мадина.

Углы треугольника относятся, как 3:12:5. Определите, как расположен центр описанной около этого

треугольника окружности.1. внутри треугольника2. на одной из сторон треугольника.3. вне треугольника4. определить не возможно
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Суржан Артур.
Углы треугольника относятся, как 3:12:5, значит они равны 3Х, 12Х и 5Х и в сумме равны 180°, то есть 3Х+12Х+5Х=180°. Отсюда Х=9° Углы треугольника равны 27°, 108° и 45°. Они являются вписанными в окружность и равны половине градусной меры дуг, на которые они опираются. Угол в 108° опирается на дугу 216°. А это значит, что центр описанной около этого треугольника окружности находится вне окружности. ( так как  216° < 180°)












0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос