Вопрос задан 01.04.2018 в 09:03. Предмет Геометрия. Спрашивает Полтаранос Толя.

Диагонали равнобедренной трапеции точкой пересечения делятся в отношении 2:5. Вычисли периметр

трапеции, меньшее основание которой равно высоте и равно 12 см. помогитееееееееееееее
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лебедева Лиза.

В трапеции ABCD диагонали пересекаются в точке F и  делятся в отношении 2:5. Рассмотрим два треугольника:
ΔBCF и ΔAFD/ Они - подобны. Угол BCF= углу AFD как вертикальные, Диагонали равны в равнобедренной трапеции и делятся на пропорциональные отрезки. Проведем через точку F  высоту трапеции, обозначим точку пересечения с верхним основанием -N, с нижним основанием -L. Запишем пропорцию для этих подобных треугольников:
BC:NF=AD:FL или BC:AD=NF:AD, из условия NF:AD=2:5
12:AD=2:5, AD=12·5/2=30cm.
Чтобы вычислить боковую сторону из вершины B опустим высоту и точку пересечения с основанием AD обозначим 
через K. Вычислим отрезок AK .  
AK=(AD-BC):2=(30-12):2=18:2=9cm
Из треугольника ABK по теореме Пифагора вычислим AB.
AB²=AK²+BK²=9²+12²=81+144=225
AB=15 cm.
Вычислим периметр трапеции: AB+BC+CD+AD= =15+12+15+30=72 cm
Ответ: P=72 cm

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос